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The Quarterly Report was prepared by RCA Laboratories, Princeton, New
Jersey, under Contract No. F30602-72-C-0486. It describes work performed from
June 19, 1672 to September 18, 1972 in the Communications Research Laboratory,
Dr. K. H. Powers, Director. The principal investigator &nd project sclenti:t
is Dr. D. A, de Wolf,

The report was s:bmitted by the author on 13 October 1972. Submission of
the repurt dces not constitute Air Foce approval of the report's findings or
conclusions. It is submitted only for the exchange and stimulation of ideas.

The Air Force Program Monitor is Lt. Darryl P. Greenwcod.
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SUMMARY AND ABSTRACT

Developments resulting from work on Contract No. F30602-71-C-0356 are
reported. In Section 1, some remarks are presented on Furutsu's recent
theoretical analysis of irradiance scintillation. In Section 2, we define
and compare usaful criteria for the resolution of point features on an illum-
inated target in turbulent air. Thz results are related to the work on focal-
spot oreas. The coefficient of the log-amplitude variance in the saturation
regime is ccuputed, and we find < 6x2>'= 0.41 (K;/6L3C§)-1/6 in Section 3.
Finally, the work on rower spectra of angle-of-arrival fluctuations is ex-

panded in Section 4 to inciude z simple iaterferoreter. Two physical cases,

simply related to the ray formulas, appear to appry in mcst practical
si1tiéations.
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1. SOME REMARKXS ON THE FURUTSU THEORY

In 2 recent Special Report on the XVIIth General Assembly of URSI* held
at Warsaw, Poland late in August 1972, we mentioned a discussion on Furutsu's
recent work[1l]. Furutsu, in work that is exceptionally difficult to read,
kas derived the following results for beam waves propagating through turbulent
air:

(1) The probability density of irradiance I approaches that of a
Rice-Nakagami distribution at large propagation distances L.
(1i) Through another type of approximation Furutsu also derives
that the logarithm of I follows the Rice-Nakagami distribution:
interestingly enough "his distribution reduces to the log-
normal one for points far away from the central beam axis.
In the dis.ussion at URSI we commeunted on these results, and therefore on
parts of Furutsu's theory. Because his work is hard to read, and bec:use
Furutsu's results are being quoted indiscriminately, we shall offer these
detailed comments on the tieory as w~ see it.

There appear to be some unphysical features of Furutsu's solution. The
above-quoted result (ii) ccntradicts result (i) for points of observation on
the beam axis; they cannot both hold simultaneously. Then, as Furutsu makes
explicitly ciear in the paragraphks following hi:. 7q. (118), the fluctuations
tend to zero as the beam wave approaches a plane wave. It is indeed possible
that - in some way - the experimental realizations of plane waves are not that
close to Furutsu's plane-wave limit of his beam waves. but at any rate, it
seems decidedly unphysical that the beam-wave I does fluctuate on the central
axis, whereas the plane-wave I does not. We have uncovered a possible source
of errc» in one of Furutsu's approximations which may make (ii) unphysical.
In order to «'scuss it, we have to give a very brief summary of Furutsu's

work. It consists ol three distinct parts.

1.1 A Formal Expression for P(I)

Through a method involving variational derivatives and cumulants of the

random field, Furutsu derives a general expression of the irradiance probability

*International Union of Radio Science (URSI).
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density P(I). We quote a form given by Bremmer in a paper presented at URSI

in Warsaw[2] for plane waves:

- (B0l 402 ) fo - 1/2
P() = Qo ){ -1, 01710 11, 3 [Zicli-,_llz(ocz)l + 6%()) ]}

itk
g ojk 0
Qo,,) = exp{ 2. 2. iS5
ik ? i k J ke aoj ao
01 710
j+k >2
(D
011 = Io [1 - exp(-2aL)]
g.. =0, = 11/2 exp (~aL)
01 107 7o

Here, Jo 1s a Bessel function; Jo(ix) = Io(x) in real notation, but we use the
symbol I for the free~space irradiance and therefore have utilized the Bessel

functin" J with imaginary argument. The well- known formal attenuation coeffi-
5/3 Cz. The cumulants o,

n jk
are t. . .omnlicated to write down but they are glven in both [1] and [2]. The

cient of the coherent (average) field is a ~ k L L

summation over j and k cxcludes j = k = 1. It is this result that yields (i)
when ignoring all higher-order cumulunts, in which case operator Q(o ) = 1,
Furutsu and Bremmer stress that the off-diagonal contributions of o (for j# k)
are negligible; this simplifies operator Q(cjk) somewhat but not enough to add
anything new.

1.2 The Moment Equations

Furutsu therefore abandons this approach and derives the moment equations

by his cumulants + variational-derivatives method. We state his equations in

the following form: Let ¥m (SQ,L) = (xm,ym,L) be the coordinate of a point of
L. The N-th moment<iIN> is derived from a quantity

M(Bﬁ,gL,L) = <E(?1)--—E(?N)E*(?i)-—-E*(?ﬁ)>»that is a function of L and of the

observation in the plane z

2N transverse coordinates . ---§.,B'---B' (symbolized by %., 3') by setting
1 N’"1 N k

i
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3; = 3#, and then allowing all N coordinates 3& to coincide with 3; = 0, the

coordinate of the central axis. The moment equatioa is

[a/az - (4/2D - (k/2¥ (5, ,3;3] MG, 46y42) = 0, (2)

completely analogous to the parabolic wave equation in a random dielectric

where we have the Laplacian A instead of operator D, and 6¢ instead of iW.
The definitions of D and W are

(=]
n
~~
~>
!
[~
S’

N N
W= 3 [V(B' 2 +V(@'-p,) -~ V(p,-p,) - V(b*'-b*')] (3
oo} k"3 k "j i 'k 3k
L

V(p) = k_/ dz<65(3,z)de(3,z)>
0

Note that W is wholly determined by the plane-wave mutual-coherence function
(mcf) V(p), which - for the Kolmogorov turbulence spectrum of e - goes as p2

5/3

for p < 20 (microscale), as p for 20 <p < Lo (macroscale), and saturates

as p > ., No objections to (2) and (3) and no differences with other earlier
derivations are noted.

1.3 An Approximate Solution of the Moment Equations

Furutsu finds an approximate solution to (2), namely MF(o ,pk,z) for
gi,pj (all j,k) by apgroxim “ing W(pj,pk) by W. (pj,pl), the function obtained {
in (3) by using the p° form in the V(p) for all p. Furutsu's rationale for
so doing is based on the premise that because he wants a solution to (2) for
the limiting case that Zi-Zj + 0, for all j,k, he might just as well use a
limiting form for W obtained in the limit 3&-3 + 0. That limiting form is

]

the above-described WF obtained by utilizing Furutsu's Eq. (68a), and it results

in (ii).
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We believe the sourc2 of possible error, or difference of opinion as to
the validity of the result, lies right here. In our view the approximation
W= Wf yields an MF # M. To make this plausible, we recast (2) into an integral
equation subject to the boundary condition that M (Bj,gi,L) + 1 as W+ 0 (the

free-space moments are all unity).

L

-(i/2k) (L-2)D
M(Kj,ﬁl'(,L) =1 - (k/2) !dz e

W(gi ’g;()u(gj ,3;(’2)] 3 = '.;' (4)

A formal series solution to (4) is obtained through iteration; the re-
sulting series is analogous to that of the Born terms of the integral wave
equatior,

Furutsu's approximation W = WF is correct when D = 0. Tkis can ge seen
in general, but also specifically from a simple example: Let W = sin"z. Then
WF = 22, obviously the asymptotic form of W as z » 0. If we solve (2) for this
simple case we obtain

M = exp [-(22 - sin22)/4] . MF = exp(-z3/3) (3

Clearly, M » MF as z + 0, as Furutsu claims it should, and he was pre-
sumably guided by such an example. However, when D # 0, as is the case in (3),

matters are entirely different. To start out with, the operator in (4) should
]

K*
operator containing D brings into play an infinite number of higher-order deriv-

work first on WM; only thereaicer should one set 3j =3 The exponential
atives of V at the origin of its coordinate. This means that the shape of V
(thus also of W) well away from the coordinate origin plays a role in determin-
ing M! That suggests strongly that MF # M because WF(p) # W(p) for » > 20[3].
We have, in fact, cor inced ourselves of this fact by choising a few simple
examples of operators D in the first Born term of (4).

Our conclusion is that Furutsu's result (ii) presumably is not valid for
EM waves in turbulent air. It would hold onl; for a hypothetical randcu medium
governed by a V(p) « pz for all p. However, even for such a medium it .s

difficult to see how one can reconcile result (ii) with (i).
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2. RECOLUTION OF FEATURES OF AN ILLUMINATED OBJECY

The resolution of optically visible features of an illuminated object
in the turbulent atmosphere has beer studied by Fried[4,5). Fried has com-
puted the MIF (Mutual Transfer Functior) of an optical system in the turbuient
atmosphere, taking into account a2 differzsce between lorg-term and short-term
exposure. BHis formalism des-ribes the distortion of 2 point image formed by
2 lens in turbulent air. We are interested in a2 somewhat different concept
and will therefore adopt another approach.

Consider Fig. 1 where we have sketcheé a ground-level “"eye" observing an

object at distance L subtending a geometrical angle ég = arctan(polL)*=po/L

HEIGHT 2z i

Z4

T 77777777 7
777 “GROUND

Figure i. A ground-level observer, and two point features
separated by distance g, from each other on an
object at range . and height Z.

for small oo/L. We want to know whether or not we can distinguish two point
sources nn this object separated by angie 8 in turbulent air, given that we
can distinguish between them in free space. To do so, we shall compute the
difference 63 in bending of tne two rays emanating from =ach point source which
would reach the eye in the absence of turbulence. This corresponds to Fried's

short-term expcsure. Analogous to long-term exposurz would be the distortion

SR e
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which includes refraction of the centrzl ray corresponcing to image blurring
by randon: variations of “ke wavefroet tilt. This latter case does 2ot appear
very interesting to us because it is 2lways pessiblie to track the total object

and thus remove the “wavefroat tilt” zs Fried terms it. The nther case,

correspording presumably to Fried's short-term exposure, zppears more icrerest—

ing because it i21lls us how features become indistimguishable even when the
totzl object is being tracked. Thus, we are interested in the a2agle 3¢ which
is appropriately given for 2l1 conceivable distconces in the atmosphere by the

geometrical-optics ray forma:la,

L ,
85 =-% j{; és ':E"'lés{pl(s) ,s) - 7’5265{02(5) ,s](’
0,(s) = (L-s)s o/2L (6)
92(5) = - (L—s)solZL

-> -
The derivzatives ?1 and VZ are with respect to tkhe transverse coordinates

pl(s) and pz(s) of the two rays (sketched in Fig. 1) we are comparing.

Clearly 45 - 0 as e, 0, and other properties expected of this dijfegrencs
a@igle 58 will become apparent later. ¥e shzall proceeé to calculate t'-« sta-
tistics of 45. Analogous to so maay other similar guantities in turbulent air.
this one too is clearly Gaussian with zero mezn, and we need only ccopute its
variance. To describe all the details of this calculation would be extremely
tedious as it differs hardly from many previous ones. The notation is given
in preceding reports{6]. The technique is always similar. It involves the

following steps:

(i) Replace $Tée(g,s) by - iKse(k,s) through a partial two-
dimensional Fourier transform in a plane s = const.

(ii) Use*the customary properties of the covariance<:6E(K;,sl)
6E(K2,sz)> to igncre effects of order LOIL and to introduce

the dielectric turbulence spectrum %(K).

— - 2
22 @) = 3273 x 0.0%3 ci(x2 + Loz) 1176 o (—Kz/r;) (7)
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We find

J
[¢]

L
<s>= (41)’1f

o
zisfz(s)f déx K3 #(K) %1 -J {K::l(s)é (8)
0 )
where gl(s) is giver in (6). As we shall cozsider fairly saeli values of
3
sl(s) and because there is a2 factor K~ fp the above integrand, it cam be
-2 =11 -3
argeed that the factor (Kz + Loz) 11/6 in (7) may be replaceé by X 1l3. In-
sertirg (06) zad (7) into (8), intrcducing tihe auxiliary variable x = Kzlni,
a2ad therp performing the integration cver the mew variable x, we obtaia:
L

e /3 f 2, .4 22 2 1
<855>= 1.3 7(1/6)<. J, o= caoi- u(1/6,1,-Ze 2217 ()

The coefficieat 1.3 is zn zppreoximaticn of 4 x 0.0337:2 accurate to about 0.2,
T is z gamma function, znd ¥(z,b,z) is a Kummer fun-tion defined in (13.1.2)
of[7].

2.1 Horizoatal Propzgation

ror ¢

nye

. - 2 - - X o
orizontal propagation, Cn(s) is a constant. Using the above-cited
power-series definition of the Xummer function, we expand into a2 power series

and integrate terz by term to obtain

b ol . €« 9 \ 2m
s =13 AP . X ) _Id/em) ( = °) (10)
oo =1 (=) (2n+1) 2

This form is useful for small values of (moo. Thus, when oo << io, i.e. when

two distinct features are separated by wmuchk iess than the microscale, we find

a differential refraction with variance.

T )
<E%2> =1.3 C2K1/3L x iare) (« o )2 for p << % (113)
n m 12 oo o o

. . . 2 /s . . i . 2 2
Note that the combination . 2 Ln(ml L is identical to the ratio rLB/L where

2 . . . .
T g is the area or the average focal spot in turbulent azir minus the vsiuuxm




2iffrazctica-1imiied arez as defined 1n REVC-TR-72-119[56j. O the other kand,

whep o, > 20 the Xummer fusetica iz (9) is negligible and we obtzia

. 2
<85> = 1.3 ¢& L « ras6) = P8 for o >> 1 (11b)

Eguations (I}; provide z basis for decidimg whether or mor revcluzion is
possible. %z sugzest - somewhat arpitreriiy - th&t'<é&23‘be compared with
6:==c§iiz. The reason for this criterica is tkat 2 ray coming Srom feature I
would appear tce be coming from feature 2 when these angles zre ecguzl, azacé hence
fearure 2 wovid mot be inlistinguishable from feature 1. However, feateres i
zné 2 are mot cunfused with eack other ﬁhen‘<é§2> << 52, i.e., resolutioz is
good. A resolution index of use would be<<(é§lég)z> . Resoiutioz is good

{bad) wnen this index is much less {more) thzn upity. From (11) we cbrain

T(2.%)
2

<(3/z )>
(=7 g)

2 .
(ranB) for o << lo

i

(12)

- 2
r(1/e) (rLB/SO) for 5 >> lo

Cousider (12) first of all for sxil ao(so << Lo), i.e. for resolving well

within the microsczle. It is noteworthy that the criteriom is thea indeper-
deni of 903 In fact it simply depends upon the ratio cof IR to io’
the strength of cumulative turbulence along the path, whether or not resolution

i.e. upon
of snzlil features is possible. Let us recast (12) into 2 more numerical form:

2
<(é& /8 2> = . f £
é /og) (rLB/O 61 Lo) for o << &

(13)

~ 2 .
(Z.ArLB/co) for o, > &

¥We hzve reproduced Fig. 1 of RADC-TR-72-119 as Fig. 2 in this report, so that
the user can sizply read off g for given L and Ci(io was chosen to be 6 mr

r this graph). Sub-microsczle details appear to be unresolvable for

s 30—1&m-2/3

0
2 ;s ; .
A and distances beycnd several hundred meters, a hardly surprising
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Figure 2. A plot of rjg as a functioaﬁof range
L and turbulence strength Cj.

fact a2ad sozmewhat useless since the microscale is in itself so small. Let us
rather consider the other - more practical - case that s >> io in which case
the sezond of (13) would hold. 1n :this case resolution is i-st for all details
that exceed the size Z.ArLB which is easily read off Fig. 2. Forzexampliz t§73

critical size for distinguishing details at 3-km distznce, when Cn =10 "

k4

appears to be of the order of 8 cm.

A more formal version of this simple theory can be obtzined by utilizing
Yura's procedure{8] for cor uting t.e mutual-coherence function (mcf) of <wo
delta-function scurces at locations 1 and 2 of Fig. 1. It appears suificient
to us, however, to utilize (i3 and Fig. 2 for rapid estimates of the amount

of .etail that can be resolved. In the sense that amplitude effects do not
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appear to play a» iuportaut role in the plane-wave aad spherical-wave mef, it

would a2ppezr that comsiderations based on (9) suffice.

2.2 Slant-Pzthk Propagation

If the viewed object is ar zltiruvde Z, then the developmezt from (8) on
is different becavse z 2(s), heace Ci(s}, is z function of path positioa. The
aliicude model of Ci(s) is discucsed in TR-RADC-72-11%[€] ir encugh detail.
We shzll zdapt the Sy >> }‘o ondition so thar the Bessel Suncrioz im (8) czo
be igmored. Im that cose we fimé
<z = 5(zy <asl(op

&)

(™

(

/ 2/3

1
Flz) = és f G+ sZ,’ze:,)_2 3 1+ <2f1 Yy exp(-2s2/%),
0 -

at midday (sunny weather) 154-"1.5 =. The observatioa z,titude is chcsez
arbitrerily as zcz 1 =, but there is some uncertaziaty ia rhis choice. There
is z2iso comsiderzble arbitrazriness in the use of this mocdel for zititudes

above severzl hundred m2ters. 4As 2 result, we shzll also restrict curseliwves

to Z << h.

(A} Dewa, dusk zpproximation, I - =

iz this case, only the first integraad factor of ¥(Z) deviates from urnity,

= -2/3 -
F{Z) ~ 3(Z/z) , 7_%€< Z << h (152)
{B) M¥idday, suashine, ).sz 1.5 =
This is a slightly more complicated tase, even for z, 7 << h. Through
coordinate transformations, {15) can be reczst into
2/ (ig-2g)
[.2 1173 ~-2/3 -2/3
F(Z2) =:0 24 Lho-z i+y i
(2) =1i 2 /2270 -z )] dy (I+y) =7, (16)
0
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which expression contains z= integrzl zepresentation of inmcomplete beta funcrica.

Bowever, the upper bound of the integral is extremely large; berce, we may set
it to =. We then have the representztiocn «f the Vummer fenctioa G(1/3, 2/3, 0)
(sec formmla {33.2.3) i=n ref. (7)), which reduces to 2 quotiemt of prcducts of
gama feoctions. We fing

/v 2/ 3, E's
F(5/6)

—~ -1 -
F{Z) ~ x (z/zo) » zo << Z <~ &

. (i5%)
~ s(zlzc)"'

The mumerical estimate ie (159, is baced on £sz 1.5 =, zozl ». These formulzs
(15) are iatezmieé to be guidelizes rather tkar a rigorous bzsis. The urcertain-
ties in the C (s; model zre tee large .or moce accr'ar.e results. ¥e note 2
streager reduction with alrirude increase of <3g* (Z)> cvmpared wich an eguivae-
lent horizomtzl -path propagsticn sitnatior at middy than at dawn or dusk; on
the other hand, Ci(ﬁ) is us:sily much higher .t midday so that conditions for
fezture resolution ave usu2ily bezter zt dawn and dusk, even for objects fairly

high ia elwevatioa angle.

11
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3. COSFFICIEXT OF TZE LOG-2MPL:TSUE VAREANCE

2 new theory of irrazsisace fluctwearions of z plane weve in turbulent &ir
was presentsd in a previces gquarteTly report, RADC-TR-72-204[6]. Its mzjor oew

resalt w2s o predict 2 log-normel distriburicn of irrzdizmre ! in the satira-

< - - ije_1if6 2 | czs S
tiom regime, f.e. where k / L / Cn is ooz sm=li. Xorz specifically, ir de—
- . - - c P 2 i3 2.2 .
fines the szturzrion regime >y the size of me parameter 5, = ¢ ¥ C_, whichk
coes i 6 i . . . s s
does oot differ z great dezl from k / [ 27 opriczl fregrencies, amd i
precicts for the log-mraplitede weriance
. 2 i -k ’6 -
<ix“>= ”3:. (i7)
. 2 . < . s cide of (i7) P : :
sten T, >> 1. The rigbt-nend side of (17) mey lcok vafzmiiiar bur *¢ 5o is
£ - -
- § - ,iﬂﬁ.lllé -”D - - - - 1
oot very cifferent frowm (k7L C_ &t opticzl freguracies. O=me sioulé
B 2
2ote, however, thzt the predicied com inztions of varizbles iz T, enc iz (i7)

zre mot restricteé to Xoimogorov turielence stztistics. They zre zmore gezer:zl,

%.

we prefer to use thex zlso beczuse the cistimction tetweea them a2ad
6 11/6.2
C

)

7 .
3 cznmot be made experimentzlly to date.

P

ficient of proportioazlity is missiag in (17). The purpos: of tais

"o

< Co€

»

section is to estimzte it. Tiwe starting point is Zg. (&%) iz RANC-TR-72-Z(:.

Tnis equation yields z real part y given by

¥ = -(5/87 ) f szdfx &, Z)su)[:{ (.-2)/2klexp[-iZ-Z(2)], (182)

znd we use the conservation-of-energy relationship for the wvarizzze of y,
aecely < 5)52>= - <y >, to cozpute the variznce <iv2> froz= (18z2). The
correla..ion<d&(_ﬁ,z)e):p[-i£°5(z)]>can be comnputeé to pe

(e2/14)l(2¢(§() (L-z)eﬂp[“i{2<cz(z)> /&]dzl(. Substx’t.xting this into (1da),
utilizing the =pecr,rum 3(K) = 32{C2}\ -11/3 exp(-K /~< &’ and mzking the var.able

changes of K to » = K (L 2)/k and z to v = \L-z)/L we cbtain

[
to
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i =
< é);z> = ;;ffk” 6LHI 6C:.2. f &y }'5‘16 f déx xllsezp[-z'sif(y)], (18b)
(1] 0

wbere ¢ = 9.03312 = 0.3Z5 and £(y) = v7(1/6)y(3-2y). The last integrzl in
(18D} yields a gavme fuzcticn F(7/6), zné upon subrcguent rearrangirg of the
factors we obrain

2= T .1 [ o 7 W3Gap7IS, 19

The coefficient 2 is easily computed =rmericzily, a2nd we fimzlily obtain

/ 2\-1/6
<Byl> = 0.&1(3:;/ 3L3Cg) /5 (20)

This is the finzl result. 1Im order to ficilirate comparisos with existing
éatz plotted as meassured <é',;2> vs. cbserved vzlues of 63 = 0.307k7l6Llll 6CIZ1

we revrite (20) =s

<>z 0.3&(«;1./1:)-” 3"(03)'1" ° (21)
This formula indicates a wezaX dependence 1 frequency and pathlength of the

coefficient of (G%)—lm. 1f we set I.o = 6 mn (i.e. sz 10313-1), A= 0.6 um

(i.e. k = 1o’m'1), and choose ¥ = 1 km, we find the coefficient of (03)-1/6 !
to be 0.14. 1If we take L = 500 m or set > = 0.3 um, we obtain 0.16.

. . . .2
Mevers, et al.[9] present two curves in the saturaticn regime of <6y > vs.
2

J¢- In our notation they find

, P
<xt>=0.55 50 O s = 0,514 ua
(22)
- = T
o2k (b 017 et = L5 um

13




The agreement of tke theory with these dar: is mot unreasonable, Sut the
predicted wavelengtk dependence of the coeffi:ieat is strongly contradicted.
Eowever, the 1.15-iym curve is based on only oze point in the saturation regizme
so that perhaps one cannot use these data to predict the wavelength dependence
of the coefficient. More recesnt dzta tzken by Kerr[10] - see his Fig. 7 -~ in-

diczte a2 weak wavelength dependence hidier by data spread, and 2 relatioanship

<6x2>--0.3 (53)-116 {erroc perhaps 30Z), (23)

7I6L11/6c§ is the parameter for spherical waves. We have

where E-}f = 0.124 k
oot yet computed our coefficient for spherical waves so that we have nct

checked out tnis coefficient which contains an appreciable error due to data
spread. BHowever, it appears to be the same order of magnitude as for plane-

wave data - see Fig. 3 of Gracheva, et a2l.[11]. For these latter data we infer
from the plane-wave plot,

2 2.-1/6
<&y > ~0.25 (9¢) (error p2rhaps 20%) (24)

so that, again, there appears to be reascnable agreement with our results (20)
or {21).

(1S
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4. ANGLE-OF-ARRIVAL POWER SPECTRUM FOR AN INTERFEROMETER

In a previous report (RADC-TR-72-119)([6}, the power spectrum of the focal-
spot scintillation was shown to ve that of the angle of arrival of a ray, and
it was computed. In the present report we shall do the same for an interfero-
meter simplified to its essentials. Basically, our interferometer consists
of two parallel rays separated by a distance p. They are collected by a lens
at distance L and focused intn a fringe pattern. The "center" of this fringe
pattern deviates from the central axis only through mutual ray bending causad
by atmospheric irregularities much larger than p that are intersected by both
rays. All other irregularities give rise to relative tending, i.e., to dis-
tortion of the fringe pattern. A measure of the df.tortion is given by the
difference 60 of the two anglcs at which both rays arrive at the lens. This

difference is described by the vector.

L
58 = (172) f dz['v’Tae(Z/z,z) -17*T<se(-3/2,z)]

0

L (25)
~(i/4n) f dz f ax&sz®,2) sin[R-p/2]
0

Each 3& refers to the gradient operator working only on the first two
transverse coordinates in 8¢, denoted by iglz. A partial Fourier representa-
tion has been introduced in the second line of (25). The vector 3 describes
magnitude and direction of the separation in the plane of the two rays. Time
t is not indicated explicitly in 88 or in Gé(f,z).

Let us define ¢A(K;T) as the three-dimensional Fourier transform with
respect to ?1—¥2 of <6€(?i,t)6e*(?2,t+r)> . Let us also define the auto-
covariance Re(T) = <6§(t)-63*(t+r)>». Upon forming this from (25), making
the customary approximations for Lo << L, and performing the usual other

manipulations, we find

Ry (1) = (e 2L/87%) [dzkxz%(k’;r)[l-cos(ﬁ-g)] (26)

15
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Note that this expression differs from Eq. (28) of RADC-TR-72-119[6] only
by an extra factor which describes the interferometer situation. We now apply

Favre's hypothesis for ¢4(E}T),

2, (K37) = 8(K) exp[iﬁ-ﬁit - 4(KAUT)2/§], 27

as set forth in RADC-TR-72-112[6], noting that

e20(x) = 32mci®? + ng)‘”/ 6exp(-l(2/l<:1) (28)

NN

¥ £ 0.033r"~ 0.325

We insertc (28) and (27) into (26) and take due note of the fact that

there are two fundamental vectors in the problem: (i) the transverse velocity
> - > .

vector UT’ (ii) the transverse separation vector p. Before writing down the
result, we develop notation some more. Let E = K/Lo be a normalized separa-
tion vector {i.e. in terms of the number of macroscales). Let §; be its
component in the direction of ﬁi, and £ be the component perpendicular to
->
UT' Let us also introduce +he two angular frequencies w

= UT/Lo and
b = 48U/L /3. The result is then

T

<]

Re (1) = 4yC§LLO—1/3f dx x(1 + x)—11/6exp ;-x [(Aw‘t/2) 2+(r<mLo)—2]
0

Sth g v

(29)

1/2 1/2

X [Jo(wTTx ) - %—Jo(p+ x'7) - %‘JO(P_ xllz)]

L

= .. 2 2

We now define the power spectrum We(w) as the integral from Tt = 0 to 1 = @

of 2Re(1)cosz as in Eq. (32) of RALC-TR-72-119[6]. This yields

16
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Wy = 8ycL "3, ,5/6) - W, (,11/6)]
o a 2
We(w,q) = m-lf dy cos yf dx( 1+ x)-qexp% -x [(-ﬁﬂ . %) +(KmLo)-€,$
0 n
? (30)
Wr 172 1 e 1/2 1 Yp 172
* 1% (UY" ) -2 (5’%" 2o \g VX S
y, = [(yiE, w/wT)2 + (Eiw/w.r)z] 1/2

This form for We(w,q) can be simplified somewhat by a coordinate trans-

formation y + -y for the third term. After some algebraic work, we obtain

[+ -] [}

2
We (w,q) = w-lf dy cos yf dx(1 + x)-qexp 3 _x[((%“l . %) +(»<mL°)-2]$

0 0 (31)

A

Note that the parameters Elw/wT = plw/UT, and £y w/wT = py w/UT are the
products of w with a fundamental time T, = pl/UT (and Ty = QI/UT) that
describes the time required for air to flow across the interferometer beams.

A third result ensues for the case that £} = 0, i.e. for the case that
ﬁi//?. The obtained spectrum is identical to that for a ray multiplied by
tne factor [1 - cos(wTy)] where Ty = py/UT. It filters out all harmonics of
the fundamental beat frequency T}l = UT/pl.

From here on, we will set £y = 0 to obtain less trivial solutions for
air flow in chat plane through the central axis that is also perpendicular to
the plane of both .nterferometer rays. It is quite easy to amend the solutions
thus obtained to the general case, simply by prefixing the factor cos(wTy) in

front of the result for the second term of (31).

17




4.1 PFrozen Flow (Taylor's Hypothesis)

Let us first solve (31) for the case that AU = £, i.e. no random compcment
of velocity. We obtain,

[ [ -]

We(m,q) = m-lf dy cos yJ dx(1 + x)‘-q exp[-x(KmLo)-‘]
0 0 (32)
“p 1/2 Gy 2 2.1/2 1/2)1
x ;Jo <Zryx -3 Zr-[y + (§w/w T) I x ‘
Following Appendix B of Clifford's work for the y integration[12], we
reduce (32) to
We(m,q) =./. dx(1 + x)-'q (xw% - w2)1/2 exp(-x/x_L 2)
9 m e
(w/wg)
(33)

2.1/2

x %1 - cos(g, [x - (w/wT) |

The following steps are carried out on (33): First substitute
1/2

X

z + wz/w%. Then expand cos(ETz ) into its power series, substitute

z t(1+w2ﬁn%), and apply formula (13.2.5) of ref.[7] to the integrals in t.

The ultimate result is

ST -w2/§22 W + w2
We(m,q) = m—l (l + w2/w%)1/2-q e Ty 1/2,3/2-q, —'2—"1
T QT (32)
2 Ef 2 \|m U[1/2 + m,3/2 - q + m,(m2 + w%)/ﬂ%]'
R M el E 2. 2., 2 (
=0 w? U12/2,3/2,® + u?) /0] \

quite clearly an extension of our previous result, Eq. (36a) in RADC-TR-72-119[6].
In the general case that §, # 0, the summation sign in (34) will be preceded by
the factor cos(gl w/wT). The Kumnmer function U(a,b,z) is given in formula

(13.1.33) of ref.[7]. The power spectrum has three distinct regimes. For

18
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e << e it is flat. PFor By << @ << ﬁr there is a2 decrezse in §_ (m Q) with

1- =
lemr\ ~2q (oote that QT = cm}bpy) Fron the first of Egs. \309 we more that
soon after « increases above s the g = 5/6 term is dominant because it y.clds

& power-spectral ¢:screase as (u/m!) -2/3 which certaialy mz2sks the small correc-

tion from the q = 11/6 term yieiding 2 (ulml) d crease. Thus, the power
spectrur decreases as a.2/3 in the regime of greatasst interest;

UT/Lo <« << UTIQO. When © exceeds QI, i.e., when we look for spectral
coaponents determined by eddies of smaller size than the microscaie, we ob-
serve a rapid cutoff.

With regard to the interferometer “"correczion factor™ {-—-1} in (3%8),
it is obvicus that Hé(w) + 0 as €; * 0. It is less clear what happens when
§; > . We know that the interferometer separation becomes infinite, and
because eddies are blown across the interferom:>ter in planes perpendicuiar te
that of the interferometer (which are parallel to the ce--ral axis) we know
tanat independent realizatiuns intersect each axis. Consequently, the factor
{=-——-1}+1, and we obtain *wice the single-ray power spectrum. This czn be
shown more easily by firs: letting QT + © in (34), i.e. by considering the

asymptote of w << QT. In that case (34) reduces to

_T(q-1/2) /7 2,2\1/2-q
We(m,q) = T ™ 1+ /mT
(35
,3/7-q 2\ q/2-1/4 2\ M
2 q-1/2 W r LY /2
x’l T(q - 1/2) cosrelopty 1+ “Ua-g P \M T Z)
W, ),
T T
It is quite clear from the asymptotic form of K as €, » « that {-——--} + 1.

Furthermore, (35) is clearly much handier for numerical purposes than (34),
which nas more detail in it than we really require in the interesting portion

of the power spectrum (w < QT).

4.2 Random Flow (Favre's Hypothesis)

Consider the general case, AU # 0 and Up # 0: the case of random Gaussian
velocities with a mean UT normal to the propagation direction. We have not

been able to perform both integrations in (31). Possibly one of the integrations
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¢ be carried cur withowt siaplifying the excressicn. Eowerer, it is pessible
to 3btein some ciosed-form reswirs o, zbaadonimg -ome of the dercofls. W wrih
discuss z few of Iimse.

£.2.% Tee u.213 Portion of che Spectrom

In this subsection, we restrict curselves ro aty << @ << 4? or fm << @y << A4

(22 is defimed szmilzrly 25 Lo with iF replacing E?). This mezns that we set

G +2) %= 52 then ser G = 5/6 and igmore the g = 11/6 conrribution, a=d let

K, = in (31). We change wvarisble x to xz = tz, and obgzin

W_(x,5/6) = I(0) ~ cos(§pumfu )I(z,),
) - mff - (36)
I(g,) = Zaflf dy cos er dr t 213 {;[;,-2 + (,;iu/ur)zjyz “‘r/";
0 0 ’

x exp[-t(yael2:)?]

The following algebraic s*eps are perforaed uoon (36) (i) multiply the
iategrand by i = expl (§gb:/2: ) t ] exp{- (¢, A./Zw ) t and zbscrb the lest
expopential into the last factor of (36); (ii) ezpand ezpl&; bxle)ZtZ] into
its power series; (iii) perform the dt integrztionm, uvsing formula (11.4.28) of

ref.[7]; and (iv) perform the term-for-term dy integration using formula {9.6.25)
of ref.[7]. The result is

(37)
x M(1/6 + m,1 -wT/aw )K 1/3(£1w/wT)
where the Kummer function M(a,b, z). ¢1so knowr as 1 1(3 b,z), is defined in
(13.1.2) of ref.{7], and K (z) is a modified Bessel function of fractional

2/3
order v. The power spectrum in the w region is thus in general,

20
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¥ () = 31«:_’:1&@'” %2, (u,506)

— % -2/3
T H z, 2
= (E“ j LICTLIS I /.My

_st(qmmr) o~ b fug; .
* %1 /3 mz.:@nz ( R
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vy Ny

Yote thar the firsz faczor of W_ m,ilé) is in zgreement with (vi), pege 7,

of RADC-TR-7Z-204[6}; there is ozmiy & éiffafaﬂ ir poormelizecion by z comstant

factor Byciz.z_c-“l } (tme factor 4%2&;"3 wzs inmadverzentiy cmirted in che
rzy formu:1z).

Tusior':s bypothesis is obtzined from (38) iz the Iimie fu + 0. If cam
be seen test (33) resuits with o

; e L. . 2,2,
21y coe éifferenmce: tohe factor 1 + INY 2

rn‘l

The other limitr is = - §. Zowever, cur formulztion lezédizg to (38)
-!. &
ie

-

2lizg with thais limit. A&s u_ ~ 0, there is mo longer
2 preferred éirectica zleng which 2

£y and f; cas be defined. Tre factor
cos(g; ul= ) in (38) zppears moreover to become infinitely oscillatory a=d
hence acts effectively as & zero factor - eanless f; + O more rapidly than
. - 0. Clearly, the formulztion in this fashion is pot suitzble for smelil
ratios of ;T/A: or of sp/=- The difficulty lies in the traasitiom from (30)
to (31): the formulz where the cos(§; w/rT) factor first appears.
Reconsider (30) and rewrite the argument of the second and third Besse:

function terms of tne integrand as

) 2 1/2
@ 1/2 T 2 i/2
Ty /2 _ (;, i.;'y> +& <
T — L (39)

¢ we | 21 1/2 1/2
N




P B L SR SUNE - AT SR £ 15 g S P S ot

Thrs, fx ghds Ifmfring case, we fimd char the cariy-bracketed facior of
j 2, 28 - 2.2
{(30) redlures o {E -J@(i&) é@(a.\glm')' , &ud, £F Mw.nam.) temms gve SgroTed,
we chserve thar fmstead of 35) = mow obrair afrer che &y fmtegrarfoe:

% (u,5/63 = (6} - 1'(D),

&0y

2
Teis formuiz cam be forther developed inmto 2z power series of (wifiw)™, bor
there is oo afrantsge to doinmg 30 for momericsi work. We sinpiy ccmpmie
I* (@) o obtaiz

¥_(.5/6) = T(2/3) (il ) (o) 2>

= £8B)
- i .o =2/3 -z < B2,
X 43 - =70 éx ¢t e JF CGult t
-mm S (el 1)
L}
2s the leading term iz the smell w ffw Iimit whem v >> lu.
$.2.2 Tke Fizt Portioa of the Spectrun
Here, we restrict curseives to u << fur, 1 << e ¥e set ¢ -~ =, replace

y by variable 7' via y = 37" ©/s. (then ve drop tke prime for comveniemie) ané

tien let « - 0. ¥e obtzin

¥.(0,9) = 1(0) - cos(§ s/ )1(5),

(41)

.z = , )
I(5) :‘T—L/ dy/ dz(1 + ):)-q e XY (2x/2w7) 50 i_\:yz + 512)1/2./;}
0 0

Unfortunately, we are not able to reduce this expression greatly. By using

the addition theorenm




-

35+ 1 5P <3 0 B0 6 £ 21 T 0N A 6B
=]
we c2t recasy (i) fxte The form
2 2
IS ol B .
i) = e ;z@(ﬁ!wzwc(;;.@

= 2 . / .
+ 2 L en™ ay2dE @ Ley (3
w=i
- - ~BF2 . - PN
L3 CONPL ). -f éxx (R F ) I, (5,07)
v}
The functions Ia in (43) zve medifisl i fixoctions. The fumctioms Fn(i %)
B2v: 10 be comprled mmericzliy. Eowever, I(0) is ezsily compated bDeczuse
?I(-ﬁ,@_) =0 form £ O and Eo(o,zg) =g - 1/2)/7(z). %e thus find for the
flar part of the spectrum whez ; =0
¥_(0) = B‘fc,z‘u-o-ln x {T(i/3)/7(5/6) - T(&/3)/T(i1/6)1}
(5%)

ol

2 2 2, s _ - {
1_G2r2myexp (-l 20 3t - cos(3yuluplf

¥e note that czme hzlf (f *he above formulz, after also replacing ~—7
by unity, is the gemeralizaticn of the ray angle-of-arrival power spectrun

for . << ~ ® << ht.. 1t vields the same limits zs (36b) and (38b) with . - O.

4.2.3 Concluding Remarks

The differences between ray and interferometer formulas, the latter given
by (38) and (40) and the former by one haif of the leading first terms of each,
appear at first sight to be unimportant. The curly-bracketed factors reduce

to unity when :‘“/‘T (or 5'/‘T in the other case) exceeds unity. <{onsidering
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tve fact cha? yFractical mema-a.oi-e., £~1, w sote tat
i;uinyzhm!w&Wu!uycﬁmwuzwdazmwbbm
&L&y&u@imwum&ng-@. Secaase wind weloe-
Eﬁsmymlywnmwmwsmﬁw-
®wle:

€5 Terricnl ivteriarometer (mo 7s compooent, & I ~1): The adowe
remarks pertaiz and “&"‘" is owice the rzy W‘i(m) for 21l pracrical par-
poses.

(11) Zorizowinl imterfermeter (o0 Z, compomert): Iz 2-is case ore cax
S&Eg*Ofudlpmnalmmo&mmtinnyfmmf@r
Wé(u‘) amendeod by 2 filver factor gl - m(e’.mh’)‘;' ir the case thatr m?.’&n
fsmts&ﬂ,zﬂt&efxmoﬁ(%) for the other, small case.

Iz is dubioms that more accurate formmias are requairaéimt’men‘zn regime,
buttheymbewrke&wtmeriaﬂyﬁm&eimgimimtiﬁsmtm.
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